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Abstract

Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to
understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a
difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate
linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest,
including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins
of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we
benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S.
cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences,
(ii) length and (iii) the number of degenerate or ‘‘wildcard’’ positions. The benchmark enabled the evaluation of the impact
of these three properties on the performance of the different algorithms. The results showed that MotifHound and
SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times
faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the
benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-
length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to
the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic
disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information.
MotifHound is available (http://michnick.bcm.umontreal.ca or http://tinyurl.com/motifhound) together with the benchmark
that can be used as a reference to assess future developments in motif discovery.
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Introduction

Linear motifs in proteins play key roles in molecular recognition

[1–3]. They mediate diverse functions including ion-coordination

[4], protein localization [2,5], protein cleavage [2], protein

assembly through scaffolding [1,2,6,7], protein post-translational

modifications [2,5], or more generally signal transduction [1]. The

rich functional repertoire of linear motifs is also well illustrated in

their extensive use by viruses to hijack the machinery of host cells

[8,9]. Typically, linear motifs (LMs) conform to a particular

sequence pattern (i.e. a consensus sequence), where certain

residues are constrained in their amino acid identity (e.g., ‘‘P’’ in

PxxP), whereas others are not (e.g. ‘‘x’’ in PxxP), and are also

called wildcards. In this work, we use the term ‘‘degenerate’’ to

refer to motifs containing wildcard positions. Linear motifs are

typically 3 to 10 amino acids long, though only few residues (,1/

3) are generally conserved due to their importance in motif

recognition [10,11]. Such short length and degenerate nature

make their discovery a difficult problem, yet, their functional

importance and widespread nature stresses the need for methods

to help in their ab-initio discovery.

Over the past three decades, many computational approaches

have been developed to predict functional LMs. In Tables

Table 1, we summarize these methods and some of their key

features. Schematically, ab-initio motif search can be decomposed

into two steps; the first step consists in searching (e.g. enumerating

or sampling) the candidate motifs present in protein sequences of

interest, while the second step consists in scoring the candidate

motifs in order to assess their biological significance.

The biological significance of linear motifs is typically assessed

by their ‘‘unexpectedness’’, which is influenced by their sequence,

by their enrichment in specific proteins, by their complexity (i.e.
number of different amino acids) and by their length [12–16]. In

other words, a motif made up of rare amino acids is more

significant than a motif made up of frequent amino acids; and a

motif enriched in a specific group of proteins is more significant

than a motif present in a single protein. Biologically relevant linear

motifs often exhibit a statistical significance that lies in or near the
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twilight zone (i.e. where there is a non-negligible probability to

observe a random motif) [17]. This difficulty begs for a better

understanding and characterization of motif statistical significance

[2,18], and calls for alternative approaches. On top of these

statistical considerations, additional filters such as evolution and

disorder have been used to pinpoint motifs most likely to be

functional [19–21]. It was indeed recently estimated that at least

5% of amino acids in disordered regions are important for

function [21]. Different strategies have been employed for

searching and scoring motifs as briefly described below and

summarized in Table 1. DILIMOT [12] is among the first

methods designed to tackle the problem of ab initio computational

discovery of LMs in proteins considering both their overrepresen-

tation and their conservation [21]. Because motifs are enriched in

disordered regions [22], DILIMOT removes globular regions and

coiled coil regions using information obtained from SMART [23],

Pfam [24] and GlobPlot [25]. Regions of strong homology are also

filtered, thereby enriching for motifs that have evolved through

convergent evolution. Finally DILIMOT uses the pattern search

algorithm TEIRESIAS [13] to return raw motifs and ranks them

according to conservation and overrepresentation. The latter

calculation requires a background probability for finding the motif

within randomly selected and similarly filtered sequences from

SwissProt [26].

SLiMFinder [14] is a probabilistic LM discovery algorithm that

uses a modified version of the TEIRESIAS algorithm called

SLiMBuild, allowing to better search for motifs that contain only a

small number of defined positions. Proteins can be masked to

exclude non-conserved residues, globular regions, low complexity

regions, specific amino acids or motifs, and annotated features

including domains or user-annotated regions to allow any

contextual information to be included in the analyses. Motif

significance is calculated using a binomial distribution introduced

by ASSET [27] with two major extensions: (1), homologous

Table 1. Algorithms used in this study to predict linear motifs and motif-rich regions.

Algorithm Description Advantages Limits code/webserver
used in the
benchmark

MotifHound Exhaustively finds motifs
overrepresented in a given set of
sequences relative to background
sequences (e.g., an entire
proteome)

Fast; Multi-thread version
available; Exhaustive exploration
of motifs; Can work with filters
(disorder, conservation)

Requires a minimum of
three input sequences
and a background;
RAM-expensive

Yes/No Yes

DILIMOT [12] Finds overrepresented motifs
relative to random sequences
taken from SWISSPROT

Integrates several types of
sequence information on motifs
(e.g., disorder, conservation)

Source code not available No/Yes No (code NA)

SLiMFinder [14] Finds overrepresented motifs
relative to a background model
of sequences

Well documented; Can work
with filters (disorder,
conservation)

Fixed motif length cannot
be set; CPU-expensive

Yes/Yes Yes

MEME [28] Explores the motif space using
Gibbs sampling and expectation
maximization

Fast, Multi-thread; Eye friendly
output

Output difficult to parse;
Heuristic solution not
guaranteed to be optimal

Yes/Yes Yes

TEIRESIAS [13] Finds motifs that are frequent in
a dataset of interest relative to a
background model of sequences

Very fast Motif length cannot be set;
Can miss wildcard rich
motifs

Yes/Yes Yes

FIRE-pro [60] Uses k-mers exploration to find
motifs overrepresented in
sequences of interest relative
to background sequences.

User friendly output CPU-expensive; Can miss
wildcard rich motifs

Yes/Yes No (running time)

NESTEDMICA
[16]

Uses nested sampling to find
motifs overrepresented in
sequences of interest relative
to a background model.

Models motifs as position
weighted matrices

CPU-expensive; Heuristic
solution not guaranteed
to be optimal

Yes/Yes No (running time)

qPMS7 [62] Find motifs overrepresented in
sequences of interest based on
Quorum Planted Motif Search

Fast; Low memory consumption Source code limited to
20 protein sequences;
Output difficult to parse

Yes/Yes No (limited to 20
protein sequences)

D-STAR [63] Finds motifs enriched in specific
protein interaction partners

Well-suited to find motifs
shared among interaction
partners

CPU-expensive; Interaction
file required to run the
program

Yes/No No (running time)

phylo-HMM[21] Detects evolutionarily conserved
regions from aligned protein
sequences using a phylogenetic
Hidden Markov Model (HMM)

- - Yes/No* No (predicts
regions not motifs)

ANCHOR [20] Predicts regions containing
linear motifs based on
sequence properties.

- - Yes/Yes No (predicts
regions not motifs)

SLIMPRED [61] Predicts regions containing
linear motifs based on a trained
neural network

- - No/Yes No (predicts
regions not motifs)

*Provides pre-computed results for S. cerevisiae and H. sapiens but does not accept sequences for submission.
doi:10.1371/journal.pone.0106081.t001
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proteins are weighted to account for the dependencies introduced

into the probabilistic framework and (2), significance scores

obtained from a binomial distribution are adjusted to take into

consideration the size of the theoretical motif space.

Other algorithms, as implemented in MEME [28] or Nested-

Mica [16], are based on probabilistic models that use sampling

methods (Gibbs sampling [29] for MEME and Nested sampling

[30] for NestedMica) to search statistically overrepresented motifs.

Both algorithms use a background model in the form of an nth-

order Markov chain, and both can be applied to DNA as well as to

protein sequences.

Here we introduce a new approach for searching motifs and

scoring their biological significance in proteins. In the first step, we

exhaustively enumerate all possible motifs present in proteins of

interest, including all of their degenerate forms. In the second step,

we evaluate the biological significance of the motifs obtained by

comparing the number of occurrences of each motif in proteins of

interest versus in the proteome, which is used as background. Our

approach is based on the fundamental premise that, linear motifs

mediating a particular function are enriched in proteins exhibiting

that function, and are rare or absent in other proteins. In essence,

our strategy is comparable to that employed by FIRE-Pro [31]

with the significant advantage that MotifHound considers all

possible peptide variations as well as all degenerate motifs (i.e. it

considers wildcards in all numbers and all combinations of

positions). In MotifHound, the search is exhaustive (i.e. it

enumerates all possible motifs present in proteins of interest),

and the scoring step is achieved by measuring the enrichment of all

enumerated motifs. An advantage of using the proteome as

background is that it inherently accounts for any intrinsic structure

of the sequence space that would otherwise require complex

models such as high-order Markov chains. For example, a Markov

model of order three would be needed to model the fact that the

motif ‘‘SSSS’’ (present in 601 out of 5761 sequences from S.
cerevisiae) is seen more frequently than expected by the product of

the individual amino acids frequencies (the frequency of S is

,9%). However, MotifHound would naturally associate a low

significance to this motif because it is frequent in the proteome.

Considering that several motif-detection algorithms were

previously developed, it may seem surprising that no comprehen-

sive benchmark is available as a point of reference. In order to

evaluate the performance of MotifHound and compare it with

existing algorithms for motifs discovery, we designed a benchmark

as follow. We randomly selected sequences from the proteome of

S. cerevisiae to create groups of 100 proteins. Within each group,

we subsequently spiked-in an arbitrary motif that could vary

according to the three following parameters: the number of

occurrences spiked-in (N), the number of non-wildcards positions

(i.e. also called number of defined positions d that is complemen-

tary to the number of wildcard positions w) and the motif length n.

We then tested the performance of each algorithm in the blind

identification of the motifs spiked-in. Below we present the results

obtained by the different algorithms in terms of both accuracy (i.e.
capacity to correctly identify the arbitrary motifs randomly

inserted into protein sequences), and the run times. We show that

our strategy, implemented in MotifHound, yields both accurate

results and fast execution times, especially for highly degenerate

motifs. In order to provide a biological context for the results of the

benchmark, we also analyzed how the three parameters (length n,

number of occurrences N and the number of non-wildcards

positions d) relate to known motifs extracted from three standard

sources (Eukaryotic Linear Motif Resource (ELM) [32], Human

Protein Resource Database (HPRD) [33] and MiniMotif [34]).

Finally, we present a case study of proteins known to bind to the

same SH3 domain, and show that MotifHound can detect most of

the known binding motifs using only the full-length sequences as

input.

Materials and Methods

Figure 1 outlines the main procedures involved in running

MotifHound. Initially the method requires two input datasets: a

background set of b protein sequences and a query set of q
sequences that are necessarily a subset of the background.

MotifHound enumerates all possible motifs present in the query,

and then computes the number of occurrences of each motif in

both the query and the background sets. The unusual represen-

tation of a motif in the query compared to the background is

calculated by the cumulative hypergeometric distribution. Below

we describe these procedures in more details.

Motif enumeration
The first step consists of exhaustively enumerating all possible

linear motifs present in the query sequences. This is achieved by

scanning the query sequences and indexing all n-mers, where n is

the motif length (here composed of 3 to 12 residues). For a given n,

the maximal size of the index is given by:

S~
Xq

k~i

Li{n)ð Þ,

where Li is the length of the ith sequence of the query set

containing q sequences.

Each n-mer from this index is then ‘‘degenerated’’, i.e. w
wildcards are introduced in all combinations and numbers, with

the only exceptions being that (i), the first and last positions are

kept constant, and (ii), we impose a minimum of three non-

wildcard positions. Thus, WC = C(n-2,w) combinations of wildcard

positions are explored per n-mer, and the occurrence of each

degenerate n-mer is also indexed. Ultimately the maximum size of

the enumerated space is min(S x WC, 20n). In order to speed-up

the following scoring step, we retain only degenerate n-mers that

occur at least in 3 sequences of the input set. Also, for each

degenerate form of the n-mers, if the replacement of an amino

acid by a wildcard does not add more than one occurrence, the

corresponding degenerate n-mer is discarded. All the degenerate

n-mers so obtained from the query sequences are then searched for

in the background sequences and their number of occurrences is

also recorded. At the end of the enumeration process, the

algorithm returns an exhaustive list of all degenerate n-mers

observed three or more times in the query sequences, along with

their number of occurrences in the background sequences. In the

following sections we call each degenerated n-mer a ‘‘motif’’.

P-value of motif overrepresentation in the query set
The second step consists of evaluating the biological significance

of each motif by proxy of overrepresentation. Our scoring function

uses the cumulative hypergeometric distribution to calculate the

probability p to see by chance a motif present at least k times in q
sequences sampled from a background set of b sequences and

containing l occurrences of the motif:

p~Q(kDq,l,b)~
Xmin (l,q)

i~k

l

i

� �
b{l

q{i

� �

b

q

� � :
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In contrast to most other algorithms, the overrepresentation of

motifs calculated by MotifHound does not depend on the nature

of a motif in terms of its composition or length. The influence of

such properties is indeed implicitly taken into account by the

number of occurrences in the background, as illustrated by the

‘‘SSSS’’ motif given as an example in the introduction section.

Because the exhaustive enumeration carried out favors degen-

erate motifs, we introduce a P-value adjustment. To illustrate this

problem, let’s compare the space of motifs of length 3 with 3

defined positions (203 = 8000 possible motifs) to the space of motifs

of length 10 with 3 defined positions. The latter corresponds to

20368 = 64 000 possible motifs, where 8 = C(8,7) represents all

combinations for placing the third defined character in the motif

(i.e., DDxxxxxxxD, DxDxxxxxxD, …, DxxxxxxxDD). The larger

combinatorial space associated with longer motifs increases the

probability of calculating a low P-value by chance (i.e. multiple-

testing problem). Thus, we adjust the P-value according to the

combinatorial space of wildcard positions the motif is associated

to. The P-value adjustment is given by:

padj~p|WC with WC~
n{2

w

� �
,

and where p is the P-value of the motif, n is its length, w is its

number of wildcard positions and WC is the number of

combinations of wildcard positions in the motif. At the end of

the scoring process, the algorithm returns a file containing a list of

motifs ranked by their adjusted P-values.

Output for the end user
For convenience and to help in the interpretation of the results,

we implemented modules that can filter the sequences to mask

homologous and/or structured regions before the enumeration. It

can indeed be useful to mask globular regions, because intrinsically

disordered regions are known to frequently coordinate regulatory

events [35], are enriched in short linear motifs [22,36,37], are

involved in rewiring protein interactions network [38] and are

often targeted for post-translational modifications [39–43]. Hence,

we provide the option to mask ordered regions using Disopred

[44], although any algorithm such as IUPred [45] or FoldIndex

[46] may be used as well. Since we are interested in functional

instances of LMs that arose through convergent evolution, it is also

important to be able to mask homologous regions in protein

sequences. To this end, we use both a filter based on BLAST [47]

and another filter based on PFAM domains [24]. Note that we

implemented the PFAM-based filter after the scoring of motifs as it

would otherwise mask too many regions. Ultimately, users have

access to the following formatted outputs:

- The HTML output (optional) consists of a table that lists the

top 100 non-overlapping motifs of each length, in the query set.

For each motif, the following information is given: the numbers of

occurrences in the query set and in the proteome, the P-value, the

gene name and the gene description (or the sequence ID if the

gene name is unknown), the domain IDs, the description of the

domain and its positions in all the sequences where it appears. The

HTML output requires pre-computed information including

disorder, PFAM annotations, and a flat file with the gene

descriptions. We provide pre-computed information for both S.
cerevisiae and H. sapiens.

- The Text output (default output and always generated)

includes a list of all motifs found in the query set. For each motif,

the values associated correspond, respectively, to the number of

occurrences in the query and in the background, to the total

number of sequences in the query and in the background and

finally to the P-value.

Implementation
Our algorithm has been developed with the following objectives:

(i), to be able to deal with large datasets, (ii), to be user-friendly,

(iii), to be organized into independent modules (e.g. sequence

selection, homology and disorder sequence filtering, enumeration

of all motifs from a set of sequences, scanning sequences with a list

of enumerated motifs, computing the overrepresentation from a

list of enumerated motifs and number of occurrences) and (iv), to

be CPU efficient. Given these objectives, part of MotifHound is

implemented in Perl for I/O error checking, enabling options and

defining input parameters, manipulating sequences, taking into

account additional data such as disorder predictions or BLAST

results, or writing HTML output. On the other hand, the C and

C++ language was used for the CPU-intensive steps, i.e.
enumeration of motifs, scanning the background, and computing

the P-values using the hypergeometric cumulative distribution. To

Figure 1. Schematic description of the processing steps involved in motif discovery with MotifHound. (1) Given a set of protein
sequences, (2) we enumerate all possible n-mers or motifs (3#n#12) present in this query dataset, (3) we then enumerate all degenerate forms of
each motif, and we discard those present in less than 3 sequences of the query set. (4) All the motifs retained are counted in the proteome used as
background. Note that query sequences are necessarily part of the proteome and are colored in red. (5) The statistics of each motif are k: number of
occurrences in the query, l: number of occurrences in the proteome, p: number of sequences in the query, b: number of sequences in the proteome.
These are written in a tabulated file used to evaluate the overrepresentation of each motif (6). The P-value reflecting the overrepresentation in the
query set relative to the background is calculated by the cumulative hypergeometric distribution (see material and methods).
doi:10.1371/journal.pone.0106081.g001
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optimize memory usage, a dynamic associative array was used,

where each key is a motif mapped to the relevant stored numerical

values (occurrences and number of sequences in both query and

background, Hypergeometric P-value and the adjusted P-value,

number of wildcard combination). Our method has been tested on

UNIX operating systems, specifically on the most recent Ubuntu

distributions (superior to 10.04 and Mint 14). A parallelized multi-

thread version (x10 faster on a twelve cores machine) has been

implemented but was not used for the benchmark in order to make

the comparison of running times fair.

Benchmark design
In order to compare different existing algorithms, we developed

a benchmark using datasets designed for this task. To have a

trustworthy comparison, we created datasets matching the input

requirements of each algorithm, and measured the ability of each

method to recover the motifs spiked-in. Our benchmark uses the

proteome of S. cerevisiae as background. To reduce calculation

time, we only kept sequences of 100 to 500 residues in length. Our

background model is thus composed of 3,000 sequences,

distributed over 30 sets of 100 randomly selected non-redundant

and non-homologous sequences. For all sequences, the average

length was 2966112 amino acids and the total number of amino

acids was 888,505. The benchmark datasets were designed by

varying three major characteristics of LMs: length n (varying from

3 to 10), number of wildcard positions w (varying from 0 to n-3)

and number of occurrences N (taking the following values: 3, 4, 5,

6, 7, 8, 10, 12, 15, 20 and 30).

In order to create the motifs spiked-in, we proceeded in two

steps as described in Figure 2. In the first step, we created 36

masks representing the number of wildcards and defined positions:

8 masks for the length 10, 7 masks for the length 9, and so on, until

1 mask for the length 3. Each mask was then used to derive 30

unique motifs generated, first by shuffling the positions of

wildcards, and second by replacing the defined positions with

amino acids. Finally, each unique motif was inserted in a set of 100

sequences, with one motif at most per sequence. To vary the

number of occurrences, each motif was inserted different number

of times (3, 4, 5, 6, 7, 8, 10, 12, 15, 20 and 30) in replicates of the

same sequence set. Altogether, the complete benchmark dataset

was composed of 11,880 sets of 100 sequences (30 unique motifs

611 occurrence numbers 636 masks). Thus, each set contained a

single motif of length n spiked-into N sequences. To compute an

accuracy value for each set of 100 sequences, the top (most

significant) motif found by each algorithm was kept and compared

to the motif inserted in the set. Thirty sets were created for each

combination of parameters (n, w, N). The accuracy shown in

Figure 3 thus corresponds to the fraction of sets where the correct

motif was identified, i.e. ‘‘Number of correct identifications

divided by 30’’.

Binding energy, solvent accessibility, evolutionary
conservation and intrinsic disorder of motifs predicted to
bind FUS1 SH3 domain

Binding energies were calculated based on scoring matrices

from Fernandez-Ballester et al. [48], and available in the ADAN

database [49]. Solvent accessibility was predicted by SABLE

version 2 [50]. In our experiments, only residues with highest score

(i.e. equal to 9) of solvent accessibility were considered in the

analysis. To calculate evolutionary conservation, we retrieved

homologues by PSI-BLAST using the default NR database from

NCBI [51], imposing a minimum of 35% sequence identity.

Redundancy among homologues was filtered by CD-HIT [52]

using 95% maximum identity. Sequences kept were aligned using

MUSCLE [53] and evolutionary rates of individual amino acids

were calculated with Rate4Site [54]. Protein disorder was

predicted using DISOPRED2 [55]. Only residues with the highest

score of intrinsic disorder (i.e. equal to 9) were considered as

disordered.

Results and Discussion

Several algorithms have been developed to help in the discovery

of linear motifs. We summarize some of their key features in

Tables Table 1. DILIMOT, Fire-Pro, NestedMica, ANCHOR,

SLIMPRED, qPMS7, D-STAR, and phylo-HMM were not

utilized in the benchmark for different reasons described in the

table. However all these algorithms are below in the identification

of linear motifs experimentally determined to bind to the FUS1

SH3 domain from S. cerevisiae. We present the results of the four

methods in Figure 3, and we provide details the parameters used

to run the different programs in Tables S1 and S2 in File S1. Note

that some algorithms would have required too many CPU-hours,

and were thus applied to a subset of the benchmark. Results for

these are shown in Figures S1 and S2 in File S1. The four methods

for which results are shown in Figure 3 are MEME, MotifHound,

SLiMFinder and TEIRESIAS.

Benchmark design
It is difficult to evaluate the performance of motif discovery

tools, as no large-scale annotated and curated dataset is available

for this task. Moreover, while the sequence of a specific motif may

be known, the functional relevance of all its instances in biological

sequences remains unknown. In order to analyze how different

algorithms behave with motifs exhibiting different properties, we

designed a benchmark that comprehensively explores three major

characteristics of LMs. The benchmark design was achieved by

inserting artificial motifs in protein sequences extracted from the

budding yeast (S. cerevisiae) proteome. Such design implies that

there is no simulated data beyond the motifs randomly spiked-in.

The sequences were indeed not simulated, as we used biological

sequences from yeast, which come with all their natural features

(e.g. tandem-repeats and low complexity regions).

One advantage of such a setup is that it enables us to assess the

individual contribution of different properties on the probability to

accurately identify a motif. The motifs spiked-in varied according

to the 3 following properties: (i), length, (ii), number of defined

positions and (iii), overrepresentation (i.e. number of sequences out

of the one hundred in each set that was spiked-in with a motif). For

each combination of these three parameters, 30 different artificial

motifs were introduced into 30 sets, yielding a total of 11,880 sets.

Accuracy was computed by the percentage of sets in which the

artificially inserted motif was correctly identified (material and

methods). We show the results of the benchmark in Figure 3. Each

graph shows the accuracy of motif identification (y-axis) as a

function of the number of sequences where the motif was inserted

(x-axis). The graphs are displayed such that the first column shows

the results for motifs of size 10, the second for motifs of size 9, etc.

In parallel, the first row shows the results for 10 defined positions

(0 wildcards), the second for 9 defined positions (1 wildcard), etc.

We thus compare the performance of the four algorithms tested as

a function of both: motif degeneracy (columns) and motif size

(rows).
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Accuracy increases with information content and
number of occurrences

Globally, we see a similar and expected trend for all methods:

given a motif, the more occurrences are spiked-in (x-axis on each

graph, Figure 3A) and the more information it contains (bottom

row to top row), the more frequently it is accurately discovered.

We broadly identify three regimes of accuracy that are strongly

dependent on the number of non-wildcard positions.

First, for 3 non-wildcard positions, a minimal number of

occurrences N,20 is required to identify more than 75% of

inserted motifs. Interestingly, all other parameters being equal, a

small motif can be more reliably identified than a large one. For

example, motifs of length 3 or 4 can be correctly identified in 80%

of cases when only 15 occurrences are spiked-in. Thus, given a

constant number of defined amino acids in a motif, the addition of

wildcards decreases the probability to detect it accurately. The

addition of wildcards indeed increases the space of ‘‘negative’’

motifs, which likely blurs the signal of the motif spiked-in. For

example, considering a motif of length 3 and a motif of length 10,

both containing 3 non-wildcard positions, the motif of length 3

leads to a maximum of 203 (8000) possibilities of distinct motifs

whereas that of length 10 is associated with a space 8 times larger

(64000).

Second, considering 4 non-wildcard positions, a minimal

number of occurrences N = 7 is needed to accurately identify the

motif in more than 75% of the sets. Thus, adding a single defined

amino acid to the motifs drastically reduces the minimum number

of occurrences required to accurately identify them.

Finally, in the third regime we found motifs that comprise at

least 5 non-wildcard positions. For those we observed a point

(N = 5), beyond which, most accuracy curves quickly reach 100%.

Overall, the benchmark delimits the boundaries of the twilight

zone by providing baselines regarding the minimal features that

linear motifs should exhibit in order to be detectable by

overrepresentation alone.

In the description above we discussed the results obtained using

MotifHound. The results of SLiMFinder are overall similar, and

mostly depend on the information content of a motif: when the

information content is low (i.e. 3 to 5 defined positions),

MotifHound finds the motifs spiked-in at a slightly though

consistently higher accuracy than SLiMFinder, however, as

information content increases, SLiMFinder exhibits higher accu-

racies when low numbers of repeats of the motifs are present. The

performance of TEIRESIAS and MEME, on the other hand, are

more dependent on the information content of motifs. For

example, for motifs of length 10 and inserted 6 times in 100

sequences, more than 90% of them are found by all methods when

there is no more than one wildcard position, but only ,50%

(MotifHound), ,20% (SLiMFinder) and ,5% (TEIRESIAS and

MEME) of them are found when their number of defined positions

drops to 4.

The accuracies obtained with TEREISIAS can appear surpris-

ing in that accuracy can drop as more occurrences of the motifs

are introduced. The reason for this behaviour is the scoring

function of TERESIAS, which is sometimes not accurate.

Specifically, as more copies of a motif are spiked-in, it increases

the likelihood that a variation of the motif introduced receives a

better score.

Overall, for motifs containing only 3 to 5 defined amino acids,

MotifHound and SLiMFinder tend to perform better than MEME

and TEIRESIAS. Yet, for motifs with 6 or more defined positions,

SLiMFinder is more sensitive for their discovery at low numbers of

occurrences (N = 3, 4 or 5 in 100 sequences).

Degenerate linear motifs are frequent in proteins and are
best detected with MotifHound

We show the distribution of known functional motifs retrieved

from three databases (HPRD, ELM and MiniMotif) according to

their number of non-wildcard positions (Figure 3B). A non-

wildcard position was counted when it was defined by two amino

acids at most (e.g. S/T or D/E). Conversely, a wildcard position

was counted when at least 3 different amino acids were tolerated at

a given position. This shows that about half of known functional

motifs described in these 3 databases contain only 3 to 5 non-

wildcard positions. Consistently, we know that only a few (,1/3)

hotspot residues are conserved in linear motifs [2,10]. For this type

Figure 2. Design of the benchmark datasets. The benchmark is composed of 11880 sets of 100 sequences, each set containing a specific motif
spiked-in. The motifs spiked-in vary in terms of the three following parameters: their length, n, varying from 3 to 10 residues (8 values); their number
of non-wildcard positions, D, varying from 3 to n (n-2 values per length, 36 values in total); and their number of occurrences in the set, N, equal to 3,
4, 5, 6, 7, 8, 10, 12, 15, 20 or 30 (11 values). For each combination of n, D and N, we created 30 replicates varying in the motif being spiked-in.
Altogether, 1080 motifs were created for the benchmark (30 replicates 636 masks), resulting in 11880 sets of 100 sequences (1080 motifs 611
number of occurrences). A. We first create masks for each motif length in order to assign the wildcards and non-wildcard positions. ‘Ones’ indicate
non-wildcard positions and ‘zeros’ indicate wildcard positions. The first and last positions are always non-wildcard, thus, n-2 masks are created for
each length n, yielding 8+7+6+5+4+3+2+1 = 36 masks for lengths 10 to 3. B. In the second step, each mask is used to derive 30 unique motifs, by
shuffling all positions (except the first and last) and replacing all non-wildcard positions by amino acids with frequencies drawn from the yeast
proteome. In this example, 30 unique motifs are generated from a mask containing D = 6 non-wildcard positions. C. Finally, each motif so obtained is
spiked-in once in N sequences from a set, each composed of one hundred yeast protein sequences randomly sampled. The orange rectangles
symbolize the motifs spiked in, and the blue lines represent sequences. In this example, the motif has been inserted either 3, 4, 5, 6, 7, 8, 10, 12, 15, 20
or 30 times in the same dataset of 100 sequences.
doi:10.1371/journal.pone.0106081.g002
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of degenerate motif, representing 50% of known functional motifs

(yellow background, Figure 3A and Figure 3B), MotifHound

performs best compared to other existing methods. Among motifs

with higher information content (from 6 to 10 non-wildcard

positions), representing ,15% of known functional motifs,

SLiMFinder outperforms MotifHound. The advantage of Motif-

Hound that we saw earlier, i.e., that it does not take into account

the structure of the motif itself but only its distribution of

occurrences, is thus also its weakness in this particular scenario.

Overall, for most biologically relevant motifs with low

information content (3 to 5 non-wildcard positions), the scoring

function of MotifHound (cumulative hypergeometric distribution)

is able to discriminate the motif spiked-in better than other existing

approaches. This makes it a promising approach to discover new

linear motifs mediating protein-protein interactions involved in

cell signalling and regulation, as these usually exhibit low

information content (Figure 3B).

Running time
The barplot in Figure 3C, shows three scenarios in terms of

running time: worst-case scenario (motifs of length 10 with 4

defined positions), best-case scenario (motifs of length 4 with 3

defined positions) and an intermediate scenario (motifs of length

10 with 7 defined positions). In each scenario and for each

method, 330 benchmark datasets were processed. Regarding

MEME, running times are stable and do not depend on the case

scenario. The MEME’s average running time for one dataset is

about 16 seconds on the workstation we used.

Figure 3. Comparative analysis of different algorithms in the discovery of degenerate linear motifs. A. Each graph shows the motif
detection accuracy (y-axis) as a function of the number of sequences N where the motif was spiked-in (x-axis, number 12 and 20 are not shown). Each
graph shows the results for a motif of length n (columns) and with 3 to 10 non-wildcard positions (i.e. 0 to 7 wildcards) (rows). Colors correspond to
the methods tested (red: MotifHound, blue: MEME, green: SLiMFinder and purple: TEIRESIAS). The accuracy is assessed by the capacity of each
method to recover the motifs spiked-in the datasets. For each combination of parameters (length, number of wildcards, number of occurrences),
there are 30 unique motifs inserted, each in a unique set of 100 sequences. Thus, each motif correctly identified increases the accuracy by 3.33%, and
an accuracy of 100% means that the motifs in all 30 replicates were correctly identified as being the most significant. B. Statistics on length and
number of wildcard positions for biological motifs extracted from the Human Protein Resource Database [33] (HPRD), the Eukaryotic Linear Motif
database [32] (ELM) and the MiniMotif resource [34]. We present the statistics for 5 groups of motifs defined according to the number D of non-
wildcard positions that they contain (D,3; 3#D#5; D = 6; 7#D#10; D.10). C. Barplot of running times in seconds for three case-scenarios
representing different levels of motif-search complexity. The best scenario is a short well-defined motif (length 4 and 1 wildcard), the worst scenario is
a long and degenerate motif (length 10 and 6 wildcards), and an intermediate scenario corresponds to a long and little degenerate motif (length 10
and 3 wildcards). Each color corresponds to a method, as in (A).
doi:10.1371/journal.pone.0106081.g003
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In the best-case scenario, MotifHound competes with TEIR-

ESIAS, but it significantly slows down in the intermediate and

worst case scenario. On average, for the length 4, MotifHound can

process a dataset in 5 seconds. For length 10 however, it takes

about 100 seconds for both the intermediate and worst-case

scenarios (note that in MotifHound, running times are impacted

by the motif length and not by the ratio of defined to wildcard

positions in the motifs). TEIRESIAS is the fastest method in all

scenarios even though running times increase for longer motifs.

On average, for the length 4, it takes 4 seconds to process each

dataset and it increases to only 13 seconds for the length 10.

Considering SLiMFinder running times, 440 seconds are required

in the best-case scenario, 1758 seconds in the normal case

scenario, and 5920 seconds in the worst-case scenario.

In Table 2, we compared running times for all methods and for

all the benchmark datasets. Running times of all methods are

affected by the motif’s length, but also because increasing the motif

length requires more benchmark sets in order to cover all

combinations of n, w, N. Overall, MotifHound is ,17 times

faster than SLiMFinder, ,2 times slower than MEME, and ,9

times slower than TEIRESIAS. Interestingly, it is very fast for

short motif lengths, remaining faster than MEME up to a length of

6 amino acids. The complexity of our algorithm indeed scales

quadratically with the motif length because we explore the

complete combinatorial space of degenerate motifs.

Application to the identification of motifs binding to the
FUS1 SH3 domain

The yeast protein FUS1, which is involved in the mating

process, contains a SH3 domain that has been shown to bind to 25

peptides (binding sites) within 22 different proteins [56,57].

Among the 25 known binding sites (Table S3 in File S1), some

include the consensus motif R[ST][ST]SL and others do not. We

compared different algorithms in the identification of the 25

experimentally characterized SH3 binding sites. To this end, we

used the same algorithms as in the benchmark, three webservers

(DILIMOT, SLIMPRED, and qPMS7) and three additional

algorithms, ANCHOR, SLIMPRED and phylo-HMM, which

aim at detecting motif-containing regions rather than specific

motifs. The parameters used for each algorithm are detailed in the

supplementary material (Table S4 in File S1). For each algorithm

we selected the top scoring motifs or regions such that they

covered 2.15% of the total length of the 22 protein targets, a

coverage that is equivalent to that of the 25 binding sites in the 22

protein sequences. The coverage could however be smaller than

2.15% if the algorithm did not return enough motifs, or could be

larger if a large number of motifs were returned with identical

scores, as with D-STAR.

For each algorithm, we show in Figure 4A the percentage of the

total length of the 22 sequences covered by the motifs identified

(blue bars), as well as the percentage of the total length of known

SH3 binding sites covered (green bars). We found that the motifs

predicted by FIRE-Pro, SLiMFinder, qPMS7, and MotifHound

exhibit the largest overlap with experimentally characterized

binding sites, with an advantage to MotifHound. In Figure 4B, we

show the coverage of each algorithm for binding sites that

correspond to the consensus R[ST][ST]SL motif (blue), or that do

not (green bars). We found that, FIRE-Pro, SLiMFinder, qPMS7,

and MotifHound predicted all binding sites corresponding to the

consensus R[ST][ST]SL, yet only qPMS7 and MotifHound were

best at identifying other binding sites with ,23% and ,30%

coverage respectively.

Next, we examined the motifs identified by the different

methods in terms of properties generally expected of SH3 binding

motifs (high evolutionary conservation, high solvent accessibility,

high intrinsic disorder, and low free energy of association with

their cognate partner). In Figure 4C, we show these properties for

known (red) and predicted (green) SH3 binding sites. Remarkably,

the figure reveals that motifs identified by MotifHound exhibit the

expected signature for these properties despite the fact that no

such information was used in the first place. These results

therefore illustrate that scoring motif enrichment by the strategy

employed in MotifHound is effective and complementary to other

methods.

Conclusion

To conclude, MotifHound exhibits a good combination of

speed and accuracy. The accuracy is indeed comparable to that of

SLiMFinder and even higher for degenerate motifs, while the

speed is comparable to that of MEME and sometimes higher for

short motifs. Moreover, the benchmark we carried out provides

lower estimates of motifs statistics required for their discovery, i.e.
we observed that identification of motifs is accurate when they are

defined by more than 4 amino acids and occur in over 6 sequences

out of 100. The validity of our approach has been reinforced by

the correct identification of linear motifs characterized to bind to a

Table 2. Run times for the main methods used in the benchmark.

Motifs Length Number of Sets Total running time in minutes

TEIRESIAS MEME SLiMFinder MotifHound

3 330 26 113 140 21

4 660 57 251 774 83

5 990 91 376 2808 207

6 1320 129 476 7869 417

7 1650 170 608 18632 796

8 1980 215 740 37153 1645

9 2310 255 863 58457 3096

10 2640 493 1003 80689 5866

Total 11880 1436 4430 206522 12133

doi:10.1371/journal.pone.0106081.t002
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SH3 domain. The robust and simple framework upon which

MotifHound is based, together with the fact that it is developed as

an open-source project, will make it a solid platform for future

research involving discovery of linear motifs mediating new

functions, to ultimately better understand protein-peptide interac-

tions [58] and open new possibilities for drug design [59].

Figure 4. Detection of linear motifs in 22 protein targets known to bind the FUS1 SH3 domain. A. FUS1 is a yeast protein involved in
mating. The SH3 domain of FUS1 is known to bind 22 proteins, through 25 binding sites that cover 2.15% of their total sequence length. We blindly
submitted the 22 protein sequences to several algorithms for them to detect the binding sites. Two types of algorithms were considered, motif-based
algorithms, which detect specific overrepresented motifs, and regions-based algorithms, which detect regions predicted to encode any linear motif.
We then considered the top motifs (or regions) returned for each algorithm, such that they covered at most 2.15% of sequence’s length. For each
algorithm tested, we plot the coverage of the motifs identified, as well as the corresponding coverage of known SH3 binding sites identified. B.
Among motifs experimentally characterized to mediate the recognition between FUS1 and its partners, some motifs correspond to the known
consensus R[ST][ST]SL and others do not. Here we plot the fraction of coverage for both types, showing that MotifHound is particularly able to
identify non-consensus sequences. Together, the results in panels A and B show that the measure of ‘‘motif enrichment’’ introduced with MotifHound
enables the accurate detection of functional linear motifs, and is in fact the best in this case. C. We know that linear motifs tend to exhibit specific
biological signatures. They indeed tend to be conserved, they tend to appear in solvent-accessible as well as in disordered regions, and in the case of
SH3 recognition motifs they should exhibit favourable free energies of association with the SH3 domain. We compared these properties for motifs
identified using the different methods, showing that those returned by MotifHound consistently reflect these properties.
doi:10.1371/journal.pone.0106081.g004
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