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Evolution of complexity in eukaryotic proteomes has arisen, in part,
through emergence of modular independently folded domains
mediating protein interactions via binding to short linear peptides
in proteins. Over 30 years, structural properties and sequence
preferences of these peptides have been extensively character-
ized. Less successful, however, were efforts to establish relation-
ships between physicochemical properties and functions of domain–
peptide interactions. To our knowledge, we have devised the first
strategy to exhaustively explore the binding specificity of protein
domain–peptide interactions. We applied the strategy to SH3 do-
mains to determine the properties of their binding peptides starting
from various experimental data. The strategy identified the majority
(∼70%) of experimentally determined SH3 binding sites. We discov-
ered mutual relationships among binding specificity, binding affin-
ity, and structural properties and evolution of linear peptides.
Remarkably, we found that these properties are also related to
functional diversity, defined by depth of proteins within hierar-
chies of gene ontologies. Our results revealed that linear pep-
tides evolved to coadapt specificity and affinity to functional
diversity of domain–peptide interactions. Thus, domain–peptide
interactions follow human-constructed gene ontologies, which
suggest that our understanding of biological process hierarchies
reflect the way chemical and thermodynamic properties of linear
peptides and their interaction networks, in general, have evolved.
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Many proteins, particularly in eukaryotes, are composed of
modular protein architectures consisting of multiple in-

dependently folding domains (1). Specific domains such as SH3
and PDZ domains were repeatedly used throughout evolution in
increasingly complex organisms to mediate protein–protein in-
teractions involved in signal transduction and protein targeting
(2–5). These domains are associated with a number of human
diseases and are targets of virus and other pathogen virulence
proteins (6). Functions of these domains include binding to se-
quence-specific peptides both among themselves and on other
proteins. Such interactions can create enormous plasticity in
complex signaling and regulatory networks on immediate to evo-
lutionary timescales (7), and are often used for regulating the
activities of proteins and the spatiotemporal organization of pro-
tein interaction networks (8, 9). However, at the cellular level, we
still do not grasp why certain peptides in proteins bind to distinct
domains with high specificity whereas others highly cross-react
with a number of members of a family of domains, and also what is
the relationship between specificity of binding and specificity of
functions of domain–peptide interactions. Two extreme examples
are peptides of the MAPKK protein Pbs2 (residues 92–106) (10)
and the actin assembly protein Las17 (residues 306–336) (11),
which both interact with the osmosensor protein Sho1 via its SH3
domain. At one extreme, Pbs2 binds to the Sho1 SH3 domain with
absolute specificity, and, at the other extreme, Las17 binds to the
Sho1 and the SH3 domains of several other proteins as well. Three
crucial questions about the interactions of linear peptides with

modular domains are as follows: First, what are the properties
of linear peptides that determine their binding to an individual
member vs. multiple members of a domain family? Second, how
does the binding specificity of domain–peptide interactions relate to
the functions they are involved in? That is, can we predict whether a
domain–peptide interaction is involved in an individual vs. many
functions based on the physical properties of a peptide and its
binding specificity? Finally, how does the affinity of domain–peptide
interactions relate to the specificity and the function of proteins?
To address these questions, we chose a model system for which

among the largest sets of experimental information is available,
the Src homology-3 (SH3) domain. SH3 domains are peptide
recognition modules that mediate protein interactions involved in
many cellular functions, including signal transduction and cyto-
skeletal organization (2, 3). SH3 domains typically recognize
proline-rich PXXP peptides, where P is fixed as the amino acid
proline and X represents any amino acid (12). SH3 domains fall
generally into two classes recognizing peptides with fixed residues
proline (P), lysine (K), and arginine (R), conforming, respectively,
to [RK]XXPXXP and PXXPX[RK] (13). A number of alternative
peptides have, however, been identified (14–25), such as the
noncanonical peptides that bind to the Fus1 SH3 domain (15),
and the structured β-sheet ubiquitin-like domain of Ubi4 that
binds to the Sla1-3 SH3 domain (25). A number of in vitro
methods have been applied to study preferences of SH3 do-
mains for specific sequence patterns, i.e., motifs. These meth-
ods include protein microarrays (26), synthetic peptide arrays
(27), and screening of phage-displayed peptide libraries against
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individual SH3 domains (28). However, in vitro methods are
limited in the number, sequence variation, and the length of
linear peptides that can be explored, making it hard to fully study
the binding specificity of linear peptides and the roles of flanking
or structurally distant amino acids. Thus, we cannot be certain
that the linear peptide sequences we observe to bind to a domain
represent all possible recognizable peptides and consensus motifs,
and therefore, we cannot determine the specificity of any given
sequence for any family of protein domains.
To our knowledge, we have developed the first strategy to

exhaustively enumerate all possible linear peptides and resulting
consensus motifs within proteins that are known to bind to some
family of binding domains (michnick.bcm.umontreal.ca/dalel/).
Whereas other methods for finding motifs are designed to search
for known motifs (e.g., Eukaryotic Linear Motif database) (29–
32), or motifs with properties previously observed in linear
binding sites (e.g., 3D structures, intrinsic disorder, sequence
conservation, and solvent accessibility) (33–38), or motifs that
are over-represented according to a statistical model (e.g., hidden
Markov model, Gibbs sampling, and Nested sampling) (39–42),
our method exhaustively enumerates all possible motifs, covering
the entire space of peptide variations. Here, we determine the
specificity of all of the enumerated motifs for a target peptide-
binding domain. The results of these analyses then serve as the
essential information needed to address the questions posed above.
To this end, we first determined properties of motifs with high

binding specificity and compared them to known SH3 binding
sites. We then compared the properties of all motifs at distinct
levels of binding specificity. Finally, we explored the relationship
between binding specificity, binding affinity, structural properties,
and sequence conservation of known SH3 binding sites, including
the functions of proteins in which the binding sites are found.
We show here that there are simple linear correlations among

physical properties, binding affinity, and sequence conservation
of motifs with their binding specificity to SH3 domains. Sur-
prisingly, we discovered that all of these variables correlate with
functional specificity as defined by the position of proteins that
contain members of linear consensus motifs within the Gene
Ontology (GO). We illustrate this relationship between func-
tional and binding specificity with the example of a yeast
osmosensory membrane protein (Sho1), which binds with abso-
lute specificity to a linear peptide within its direct osmosensory
signaling effector (Pbs2), but binds to a number of other proteins
in a less specific manner.

Results
General Strategy for Exhaustive Search of Motifs. We collected ex-
perimentally validated interaction data between SH3 domains
and proteins of the budding yeast Saccharomyces cerevisiae, and,
in parallel, we carefully selected negative interactions for these SH3
domains (Materials and Methods). In total, we manually curated 890
domain–protein interactions from the literature, involving 24 SH3
domains and 361 proteins, encoding a total of 749 verified SH3
binding sites, each of which was shown to bind to one/multiple
SH3 domains through two or more independent methods (hence-
forth, “known SH3 binding sites”) (Datasets S1 and S2).
Our strategy for inferring binding specificity was based on the

premise that proteins known to bind to a common target domain
should be enriched for amino acid sequences that share particular
patterns, i.e., motifs, that mediate binding specifically with that
domain, whereas in other proteins these motifs should not exhibit
such enrichment. Thus, the binding specificity of a family of linear
peptides displaying a common motif could be scored by comparing
the enrichment of that motif in binding proteins vs. nonbinding
proteins. Here, considering a particular SH3 domain, we define
three distinct sets of proteins, the “positives” are proteins known
to bind the SH3 domain, the “negatives” are proteins that do not
bind to the target domain but bind to other domains of the same

family (i.e., SH3 domains), and the “background” is a large set of
proteins that do not bind to the target domain nor to any other
domain from the same family (i.e., the rest of the proteome). One
goal of our strategy is to infer binding specificity of all potential
motifs; thus, we exhaustively enumerate all of the motifs of variable
length that are present in the positives, and we calculate two
P-values for each motif: (i) PNEG reflects motif enrichment in the
positives relative to the negatives, and (ii) PBAK scores motif en-
richment in the positives relative to the background (Fig. 1 C–F). In
other words, PNEG aims to evaluate specificity of the motifs for the
target domain relative to other domains of the same family, whereas
PBAK aims to evaluate binding specificity for the target domain rel-
ative to the motifs found in the background. Thus, for a motif me-
diating binding with a target domain, strong PNEG and PBAK means
high specificity, whereas weak PNEG means high cross-reactivity and
weak PBAK means high promiscuity (Fig. 1C). Exhaustive enumer-
ation of motifs includes the enumeration of all possible combina-
tions of amino acids in each position in the motifs. The goal is to find
preferences for multiple amino acids at individual positions, e.g.,
[RK] in [RK]XXPXXP and PXXPX[RK] (13), and correlated
preferences at distinct positions, e.g., [ST] in R[ST][ST]SL recog-
nized by the Fus1 SH3 domain (15). This is important because
binding specificity generally depends on the amino acid identities at
distinct positions, which can be either independent or correlated (43).
For each SH3 domain, we filtered out proteins with over 95%

sequence identity to avoid motif enrichment due to redundancy
(Fig. 1A, iii). Then, motifs present in positives were enumerated
and scored through a unique three-step strategy (Fig. 1B). In the
first step, positives were exhaustively scanned for all possible
motifs of 3–15 residues including any number and combination
of wildcards (Fig. 1B). The rationale behind our choice of
searching motifs of 3–15 aa long is based on the 749 experi-
mentally characterized SH3 binding sites that we curated from
the literature (Dataset S1), the length of which ranges mostly from
3 to 15. This enumeration thus covered the entire space of all
possible motifs present in the positives, for the lengths considered.
The two P-values, PNEG and PBAK, were computed for each motif
to score its enrichment in the positives relative to the negatives
and to the background, respectively, based on the cumulative
hypergeometric distribution (Fig. 1 C–F). The goal of the first step
was thus to find motifs and score their enrichment among groups
of proteins known to bind to the target domain. The next steps
aimed to refine the motifs, which involved searching possible
variations of each motif by substitution of wildcards with combi-
nations of amino acids, e.g., [IVL] or [DE]. However, searching all
possible variations of the motifs is physically infeasible because the
combinatorial space is too vast (Materials and Methods). For this
reason, variations of each motif were searched iteratively, by
substitution of all wildcards, one by one, with all combinations of
amino acids, and only new motifs with better P-values than the
original motif were retained and then refined in their turn, until no
more motifs were retained. Therefore, in the second step, motifs
obtained in the first step were refined by searching positions with
preferences for multiple amino acids (Fig. 1B). Then, in the third
step, motifs obtained in the second step were iteratively refined to
find correlated preferences for amino acids at distinct positions
(Fig. 1B). The final stage consisted of filtering out overlapping
motifs by keeping those with best P-values, which considerably
reduced the number of discovered motifs (Fig. 1A, v). After the
normalization of PNEG and PBAK distributions (Materials and
Methods), we assigned a single P-value to each motif, corre-
sponding to the least significant of PNEG and PBAK.

Discovered Motifs with High Binding Specificity Overlap with Known
SH3 Binding Sites.We started our experiments with the analysis of
the motifs with high binding specificity. We assessed here their
binding specificity by measuring their overlap with known SH3
binding sites (Dataset S1). For each SH3 domain, in each positive
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sequence, we selected motifs with the highest binding specificity by
increasing P-value cutoff until the covered length was comparable
(i.e., equal or below) to that of known SH3 binding sites (Dataset
S3). Henceforth, we refer to these motifs as the predicted motifs
and their instances in the positives as the predicted SH3 binding
sites (Fig. 2). We found that more than 80% of the motifs we
predicted overlap or are within a distance of 10 aa from a known
binding site. In addition, more than 70% of the amino acid se-
quences in the predicted SH3 binding sites were within experi-
mentally known SH3 binding sites (Fig. 2A and Fig. S1). This is
highly unlikely because known SH3 binding sites covered 2.93% of
the total length of positives sequences, whereas predicted SH3
binding sites covered only 2.57%. This means that selected motifs
with the highest binding specificity cover (2.57% × 70%)/2.93% ∼
60% of the total length of all known binding sites. The probability
to find such overlap by chance within the 361 positive sequences is
less than 10−100 (Materials and Methods). The quality of these
results thus demonstrate that scoring motif enrichment in binding
proteins of a target domain relative to nonbinding proteins en-
ables us to discriminate between motifs that mediate binding to
the target domain vs. random motifs. These results also confirm
the supposition that SH3 binding sites have distinct sequences
compared with the rest of the sequences of the proteins where
they are located and are also rare or absent in the rest of the
proteome. The ∼20% of motifs that were not within previously
determined SH3 binding sites also did not have amino acid se-
quences consistent with the canonical PXXP motif (Dataset S1).

Predicted SH3 Binding Sites Have Distinct Structural and Evolutionary
Properties from Flanking Sequences. We next compared the three
key structural properties of predicted SH3 binding sites to those
of their flanking sequences (Fig. 2B), including binding energy,

solvent accessibility, intrinsic disorder, and sequence conservation
(Materials and Methods). We found that the amino acid sequences
covered by predicted SH3 binding sites are highly conserved
compared with their flanking sequences, and are localized within
intrinsically disordered regions in proteins (Fig. 2B). Furthermore,
we observed a striking contrast between structural and evolu-
tionary properties of predicted SH3 binding sites compared with
their flanking regions, suggesting functional importance (44). In
cases where structures of SH3 protein binding partners were
available, the SH3 binding sites we predicted were indeed in
conserved yet unstructured and solvent-exposed loops (Fig. 2C).
Flanking regions were usually also unstructured, but the other
structural properties were distinct (Fig. 2B). We also predicted
stark exceptions, such as the unconventional SH3 binding site
surrounding the Ile44 in the compact and globular ubiquitin Ubi4
that binds to the SH3 domain Sla1-3 (Fig. S2). The ubiquitin SH3
binding site has little in common with conventional SH3 binding
sites; it forms a structured β-sheet and does not carry a PXXP
motif, yet it binds to the same hydrophobic groove on SH3 do-
mains as PXXP binding peptides (25).

Consensus Residues in Predicted SH3 Binding Sites Exhibit Expected
Structural and Evolutionary Properties. As with most peptide binding
domains, only few (approximately one-third) hot-spot residues in
peptides are required for binding to SH3 domains (45, 46). Basically,
these residues identified as non-X sites (henceforth, “consensus
residues”) have specific amino acid identities, e.g., P and [RK] in
[RK]XXPXXP and PXXPX[RK], and mutation of these residues
disrupts binding, whereas wildcard positions identified as X sites
(henceforth, “nonconsensus residues”) can be mutated without
altering binding (47). A key test for our strategy was to determine
whether it is capable of identifying the consensus residues and
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(i.e., proteins that do not bind to the target domain but that bind to other domains from the same family), and the background (i.e., proteins that do not
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Information). (B) Motifs discovery strategy. Step 1: Find positions with preference for specific amino acids: we scan positives for all possible motifs of 3–15 residues
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Cumulative hypergeometric distribution. The lower the probability, the higher is the overrepresentation of the successes in the sample in comparison with the
population. (F) Ensembles used in the cumulative hypergeometric distribution for the calculation of PNEG and PBAK. Two P-values are calculated for each motif: PNEG
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their identities of amino acids that determine the binding
specificity to individual SH3 domains. To this end, we com-
pared the three key structural properties and positional amino
acid conservation in predicted SH3 binding sites for both
consensus and nonconsensus residues (Fig. 2C). Except in-
trinsic disorder, we observed differences; with conservation,
solvent accessibility, and energetic contribution showing higher
values for consensus residues. This result highlights that resi-
dues with defined amino acid identities in the predicted SH3
binding sites are important for binding, and their properties are
consistent with the key sites that form favorable interactions
with SH3 domain binding grooves (13, 48).

Flanking Sequences Have Determinant Role in Positive/Negative
Binding Selectivity. We compared the instances of enriched mo-
tifs in the positives and negatives. As expected, instances of the
motifs in the positives were significantly more conserved, more
intrinsically disordered, and showed higher solvent accessibilities
than instances in the negatives (Fig. S3). We found that there
was a sharp distinction between the properties of the flanking
sequences of the motifs in the positives and the negatives. We
found that the binding specificity of the flanking sequences in the
positives were higher than those in the negatives, which means
that, even if the flanking sequences contain motifs less enriched
than those we selected, they are nevertheless significantly
enriched compared with the flanking sequences in the negatives
(Fig. S3). This contrast between the flanking sequences in the
positives and negatives suggests an unexpected role of the
flanking sequences in binding selectivity (Fig. S3).

To understand this role, we compared two experimentally de-
termined SH3 binding sites, the peptide “NKPLPPLPVAGSSKV”
in Pbs2 (residues 92–106) that binds to the Sho1 SH3 domain,
and the peptide “AYHVQQDSLPKLPFRSWGQPYTA” in Agp2
(residues 484–507) that does not bind to the Sho1 SH3 domain but
does bind to other SH3 domains (Fig. 3A). Both peptides encode
the motif “LPXLP” that we predicted to have high binding spec-
ificity (P-value of 10−10) for the Sho1 SH3 domain (Fig. 3B). Thus, if
this motif is mediating binding to Sho1 SH3 domain, why does its
presence in Agp2 not result in its binding to the Sho1 SH3 domain?
To answer this question, we compared the flanking sequences of
LPXLP motifs in both peptides (Fig. 3B). We found, as expected,
that the motif LPXLP in Pbs2 has higher binding specificity than its
flanking sequences. However, the flanking sequences of LPXLP in
Pbs2 have significantly higher binding specificity than the flanking
sequences of LPXLP in Agp2 (Fig. 3B). This result illustrates
how the flanking sequences can play a role in the definition of
the positive/negative binding selection of peptides in the pro-
teome for the Sho1 SH3 binding domain. These results are also
consistent with experimental evidence that amino acid sub-
stitution both within or flanking the motif could decrease the
specificity without disrupting and in some cases enhancing the
binding of Pbs2 to Sho1 (10).

Specificity of Discovered Motifs Correlates with Structural Properties
and Conservation. In the sections above, we analyzed a tiny frac-
tion of the motifs we discovered, those with the best P-values that
cover comparable length in the positives to known SH3 binding
sites, and we showed the distinct structural and evolutionary

fA  predicted vs. known binding sites B  predicted sites vs. lanking regions C residues in predicted binding sites

D  Examples of predicted sites

SNX3 (HSE1) INO1 (BOI1) RRD1 (SLA1-1/2) FMP46 (FUS1) FUS3 (CYK3) PRP43 (PEX13)

Length of positives sequences covered by :
- known binding sites      : 2.93%
- predicted binding sites : 2.57%

Fig. 2. Properties of predicted SH3 binding sites. (A) The majority of predicted SH3 binding sites overlap with known SH3 binding sites. The overlap between
predicted and known SH3 binding sites was measured by the distribution of their distances. The figure summarizes the frequency of amino acids in predicted
binding sites (blue bars) and predicted motifs (orange bars) at different distances from known binding sites; the x axis represents the distance in number of
amino acids from the nearest known binding site, zero meaning inside; the y axis represents the frequency of predicted motifs (orange bars) and the fre-
quency of amino acids belonging to predicted binding sites (blue bars); the length (in percentage) of positive sequences covered by predicted and known
binding sites are indicated; results for individual SH3 domains are provided in Supporting Information. (B) Structural properties and conservation of predicted
SH3 binding sites are distinct from their flanking sequences: The x axis shows the distance in number of amino acids from predicted binding sites. All amino
acids in predicted binding sites have a distance equal to zero. The positive and negative distances represent C- and N-terminal sides of the predicted binding
sites respectively. The y axis shows the mean value of each property at different distances from predicted binding sites relative to minimum and maximum
values. (C) Structural properties and conservation of consensus residues are different from those of nonconsensus residues in predicted SH3 binding sites: the
difference in the properties of consensus residues, e.g., P sites in PXXP, and nonconsensus residues, e.g., X sites in PXXP, in predicted SH3 binding sites.
(D) Flanking sequences and predicted SH3 binding sites are both intrinsically disordered: visualization of predicted motifs on available structures. Partners of
specific SH3 domains are shown, and their standard name is in parentheses. The binding site is highlighted in red. The PDB codes for the structures illustrated
here are from left to right, 1OCU, 1JKI, 2IXP, 1WPI, 2B9I, and 3KX2.
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properties of their instances in the positives. In this section, we
describe analyses of all of the motifs we discovered from highest
to lowest binding specificity. To this end, we compared the
structural and evolutionary properties for the instances within
the positives of discovered motifs selected at different binding
specificities, i.e., P-value cutoffs, to values calculated for known
SH3 binding sites (Fig. 4). We found a strong correlation be-
tween each property and binding specificity for our discovered
motifs, both on average (Fig. 4) and for individual SH3 domains
(Figs. S4–S7). All of the properties of stringently selected motifs
(i.e., with strongest P-values) were similar to those of known SH3
binding sites (48). The correlations observed are consistent with

chemical intuition in a manner that has not, to our knowledge,
been previously described: the binding specificity of the instance of
discovered motifs for individual SH3 domains is correlated with
their structural properties and sequence conservation (Fig. 4). This
suggests that the binding specificity of SH3 binding sites is a con-
tinuous function of their structural and evolutionary properties.
The binding specificity captures the degree to which an SH3 do-
main will bind to proteins and not to the rest of the proteome or
all observable negative binders. This implies that an SH3 domain
could bind to any potentially compatible peptide depending on
such parameters as protein abundance and localization (49, 50). An
optimally specific binding site would be one evolved to bind with

Fig. 3. Binding specificity for the Sho1 SH3 domain of flanking sequences in SH3 binding sites of Pbs2 and Agp2. Comparison of the binding specificity for the Sho1
SH3 domain of the flanking sequences of the motif LPXLP in the experimentally determined SH3 binding sites in Pbs2 and Agp2. (A) Both Pbs2 and Agp2 encode a
SH3 binding peptide. The binding peptide in Pbs2 (residues 92–106) binds to the Sho1 SH3 domain. The binding peptide in Agp2 (residues 484–507) does not bind
to the Sho1 SH3 domain but does bind to other SH3 domains. As defined in our strategy, Pbs2 is a positive for the Sho1 SH3 domain and Agp2 is a negative. (B) The
motif LPXLP is among those we predicted with the highest binding specificity for the Sho1 SH3 domain (Dataset S3). The presence of LPXLP in the binding peptide
of Pbs2 is expected, because it binds to the Sho1 SH3 domain. However, the presence of LPXLP in the binding peptide of Agp2 is not expected, because it does not
bind to the Sho1 SH3 domain. The high contrast between the binding specificity in the flanking sequences of the motif LPXLP in both proteins suggests that the
flanking sequences are playing an important role to promote binding of Pbs2 to the Sho1 SH3 domain and inhibit binding of Agp2 to the Sho1 SH3 domain.

Fig. 4. Specificity vs. structural and evolutionary properties of discovered motifs compared with known SH3 binding sites. The figure summarizes four key
properties (solvent accessibility, binding energy, intrinsic disorder, and sequence conservation) of known SH3 binding sites (green bar), of discovered motifs
ranked according to their P-values (blue bars), and of sequences of all the amino acids outside the known SH3 binding sites (red bar). The correlation (r value)
between each property and P-value cutoffs is indicated. The error bars correspond to the SEM.
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Fig. 5. Evolution of SH3 binding sites to coadapt specificity and affinity to functional specificity of proteins. (A) Functional specificity in the GO hierarchy. The
GO hierarchy, represented by a tree in which nodes correspond to ontology terms and edges correspond to parent–child term relations, is organized so that
ontology terms close to the top of the tree represent general functions, whereas those close to the bottom represent specific functions. (B) Binding specificity
is correlated with structural and evolutionary properties, affinity, and functional specificity. For different P-value cutoffs (x axis), different properties were
calculated for each of the 749 SH3 binding sites that we curated from the literature (y axis): evolutionary conservation, binding affinity, intrinsic disorder,
solvent accessibility, binding energy, and functional specificity (Materials and Methods). For each known SH3 binding site, its P-value was obtained from its
matching discovered motif with the best P-value. The trend of each property was obtained by regression with multiorder (max order, 3) polynomial functions.
(C) Distinctions between specific vs. cross-reactive and promiscuous motifs. (a) The motif P[PV]XL (blue) cross-reacts with the SH3 domains of three proteins:
Sho1, Ysc84, and Lsb1. In contrast, the motif LPXLP (purple) is interacting only with Sho1; the purple motif is specific, and the blue motif is cross-reactive.
(b) Both motifs bind to the Sho1 SH3 domain and are enriched in proteins binding to the Sho1 SH3 domain, but only the blue motif is enriched in proteins that
do not bind to the Sho1 SH3 domain; the purple motif is thus specific, and the blue one is promiscuous. (D) Functional specificity vs. binding specificity among
binding sites for the Sho1 SH3 domain. For each experimentally determined binding site for the Sho1 SH3 domain, we determined a matching motif and
computed a functional specificity score for proteins that encode the motif (Materials and Methods). The figure illustrates the relationship between functional
specificity (size of round forms) vs. binding specificity (black to red gradient) for binding sites of the Sho1 SH3 domain. The Sho1 SH3 domain recognizes five
motifs with different levels of binding specificity, and these motifs exhibit different levels of functional specificity. The level of binding specificity is increasing
together with the level of functional specificity. (E) Cross-reactivity of binding sites for the Sho1 domain with other SH3 domain. Heat map shows binding
specificity for specific pairs of SH3 domain and binding motifs. The motifs LPXL, P[PV]XL, and R[KPSV]XP cross-react with different SH3 domains with
equivalent low-to-moderate specificity. The motif PX[PW]XXP has high affinity for Sho1 but cross-reacts with other SH3 domains. Only LPXLP exhibits both
high specificity and high affinity to Sho1.
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maximum possible affinity to one SH3 domain while minimizing
interactions with all other SH3 domains (10).

SH3 Binding Sites Evolved to Coadapt Affinity and Cross-Reactivity to
Functional Diversity. Over two decades of research on SH3 do-
mains have resulted in detailed understanding of how they rec-
ognize linear peptides with distinct binding specificities, and also
decrypt structural and sequence properties of these peptides
(48). However, at the cellular level, we still do not grasp why the
properties of certain peptides were optimized to be highly spe-
cific, whereas others exhibit high cross-reactivity. To answer this
question, we explored the relationship between binding speci-
ficity, binding affinity, and structural and evolutionary properties
of 749 experimentally characterized SH3 binding sites that we
curated from the literature (Dataset S1). We also related these
properties to the functional specificity of the proteins in which
the sites were identified (Fig. 5). The functional specificity of
each protein was measured by the relative depth of its associated
GO terms in the GO hierarchy. The GO hierarchy is indeed
organized so that GO terms close to the root represent broad
functions such as “catalysis,” whereas GO terms close to the
leaves represent specific functions such as “cAMP-dependent
kinase” (51) (Fig. 5A and Materials and Methods).
As with the predicted motifs, we observed significant corre-

lations among known SH3 binding sites, between their binding
specificity and both structural properties and evolution (Fig. 5B).
Surprisingly, both binding affinity and functional specificity also
correlated with binding specificity. These trends suggested that
highly conserved SH3 binding sites have been optimized and
retained throughout evolution to bind to SH3 domains with high
specificity and affinity, and they are also involved in highly spe-
cific functions. These binding sites correspond to motifs enriched
in the positives and rare in the negatives and in the rest of the
proteome. We thus find that unwanted (i.e., nonfunctional)
cross-reactive and promiscuous interactions for the proteins in-
volved in the most specific functions are minimized by directing
them to their relevant biological targets and preventing aberrant
interactions with nonphysiological targets. Other SH3 binding
sites have emerged with less constrained structural properties
and binding specificity, allowing them to bind to a broader range
of partners involved in more general functions, and easier ex-
change between them because of their relatively lower affinity to
any individual SH3 domain. We call these cases “cross-reactive”
motifs and their signatures are weak, i.e., strong PNEG but weak
PBAK values. The least conserved binding sites correspond to
motifs with weak P-values (i.e., both PNEG and PBAK), which
means they are not enriched in the positives relative to the neg-
atives and the background; in fact, they are also frequent in the
negatives and the rest of the proteome; we refer to these motifs as
“promiscuous” (Fig. 5C). These correlations suggest that the
structural properties and sequences of SH3 binding sites have
coevolved to achieve the levels of binding specificity and binding
affinity that are required for the different levels of functional
specificity/diversity of the proteins where they are located.

Example of the Peptide in MAPKK Pbs2 Binding to the SH3 Domain of
Osmosensor Protein Sho1. An example of a highly specific SH3
binding site is found in the Pbs2 protein that acts both as a scaffold
and a MAP kinase kinase; Pbs2 is an essential component of the
osmotic stress signal transduction response pathway in yeast. Pbs2
encodes the peptide NKPLPPLPVAGSSKV (residues 92–106)
that binds with absolute specificity to the osmosensor protein Sho1
SH3 domain (10), which is known to interact with peptides in 36
different proteins (Dataset S4). The Pbs2 peptide matches the
LPXLP motif for which we infer a high binding specificity for the
Sho1 SH3 domain, reflected in the P-value of ∼10−10. We found
14 other proteins among the binding partners of the Sho1 SH3
domain that contain peptides matching the motif LPXLP, and

these peptides also bind to the Sho1 SH3 domain with abso-
lute (or near) specificity (Fig. 5D and Dataset S3). Among the
peptides known to bind to the Sho1 SH3 domain, a number of
them correspond to other motifs (Dataset S3). We examined the
relationship between binding specificity and both functional
specificity and cross-reactivity for all of these cases (Fig. 5 D and
E). The relationship between binding specificity and both
structural and evolutionary properties, including binding af-
finity and functional specificity, are available in Fig. S8. The
results revealed that binding sites of the Sho1 SH3 domain
fall into the motifs “LPXL” (P-value ∼ 10−1), “P[PV]XL”
(P-value ∼ 10−2), “R[KPSV]XP” (P-value ∼ 10−3), and “PX[PW]
XXP” (P-value ∼ 10−4), and bind to the Sho1 SH3 domain with
increasing specificity, but all have lower specificity than LPXLP
(P-value ∼ 10−10) (Fig. 5D). Importantly, the binding specificity
of these peptides for the Sho1 SH3 domain increases with the
functional specificity of the proteins in which they were identified
(Fig. 5D). In addition, these peptides cross-react with other SH3
domains with low-to-moderate specificity and are involved in
diverse functions. The cross-reactivity is most visible for motif
PX[PW]XXP, which binds to the Sho1 SH3 domain with mod-
erate specificity and to other SH3 domains with higher specificity;
for instance, those of proteins Bbc1, Sla1-1, Sla1-2, and Bzz1-1
involved in actin cytoskeletal dynamics, a process that affects or is
affected by many other cellular processes, in part, through many
alternative cross-reactive interactions (52). The results revealed
also that peptides belonging to the LPXLP motif are involved in
specific functions and exhibit minimal cross talk with other SH3
domains (Fig. 5E). A typical example is the high-osmolarity glycerol
(HOG) pathway in which the interaction of Sho1 via its SH3 domain
to Pbs2 is critical for pathway activation (53). This result illustrates
the ability of our strategy to distinguish between the different levels
of binding specificity of linear peptides for their binding domains.
Marles et al. (53) have demonstrated a strong correlation be-

tween the binding affinity of the interaction of the Sho1 SH3
domain with its binding site in Pbs2 and the quantitative in vivo
outputs from the HOG high-osmolarity response pathway con-
trolled by Sho1. In addition, they found that reduction in binding
affinity in Sho1–Pbs2 interaction within this pathway causes ab-
errant cross-talk activation of the mating response. Moreover, they
found that reducing binding affinity causes proportional increase
in misactivation of the mating pheromone response pathway.
These findings confirm the importance of the relationship we have
established between the level of binding specificity, binding af-
finity, and functional specificity of the Sho1–Pbs2 SH3 domain–
peptide interaction. In contrast, the results obtained by Zarrinpar
et al. (10) showed that increasing binding affinity in the interaction
of the Sho1–Pbs2 SH3 domain–peptide interaction increases cross-
reactivity of Pbs2 with other SH3 domains, causing a fitness defect
in strains expressing the higher affinity mutants. Thus, to assure
maximum functional specificity, a peptide sequence may evolve
only to a maximum affinity that also assures maximum specificity.
We found other cases of SH3 domain–peptide interactions

with absolute specificity. For instance, the Lsb1 SH3 domain
interacts with 95 distinct binding sites spread over 83 different
proteins (Dataset S1), among which the binding site in Las17
protein binds to the Lsb1 SH3 domain with absolute specificity,
whereas the other binding sites exhibit variable cross-reactivity
with other SH3 domains.

Discussion
The strategy we presented here provides a general way to iden-
tify binding sites for any protein domain based solely on protein–
protein interaction data where the baits are individual domains
screened against the proteome. When applied to the network of
SH3 domain–ligand interactions in yeast, we showed that our
strategy could be used to predict known and uncharacterized
motifs. The latter may bind directly to SH3 domains, may be
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extensions of a known binding peptide in flanking regions, or be in
a structurally distinct region of the protein that modulates the
peptide–SH3 domain interaction (54). Thus, our approach paves
the way to expanding the known repertoires of protein domain–
peptide interactions and their regulation, in an unbiased way and
based solely on protein–protein interaction data and amino acid
sequences.
Our study revealed remarkably simple relationships among

the structural properties of binding sites, thermodynamics of
domain–peptide interactions, and binding and functional speci-
ficity. First, we saw that binding affinity correlates to binding and
functional specificity. This result implies that binding of domains
to motifs follow a continuum in which proteins involved in
general functions have lower affinity and therefore most readily
exchange with their domain binding partners. In contrast, at high
affinity, motifs exhibit specific structural properties and high
binding specificity, allowing proteins involved in the most spe-
cific functions to bind with high affinity to their cognate binding
partners. This enables minimizing unwanted cross-reactive and
promiscuous interactions, by directing proteins to their relevant
biological targets and preventing aberrant interactions with
nonphysiological targets.
The fact that binding affinity and specificity, and structural

and evolutionary properties correlate with GO hierarchy sug-
gests a deep relationship between the thermodynamics of protein
binding and functional specificity that is strikingly reflected in a
human conception of the organization of biological processes
(55). Recently, Dutkowski et al. (56) demonstrated that existing
and unforeseen GO hierarchies can be derived based on analyses
of protein–protein and genetic interaction networks. Our results
raise the mirror idea that GO hierarchies reflect biophysical
properties of protein interaction networks.

Materials and Methods
Benchmark. For the purpose of this study, we integrated a benchmark of a
number of experimental results from different studies. To this end, we
manually curated the literature for 890 domain–protein interactions in
budding yeast, Saccharomyces cerevisiae, between 24 SH3 domains and 361
proteins, including 749 binding sites, each of which was identified to be
recognized by one or multiple SH3 domains, and supported by multiple
experiments. Among selected studies, the one presented by Tong et al. (11),
pioneering in combining experimental and computational methods at large
scale, is among those with the most impact. We also integrated the high-
confidence SH3 domain interaction network obtained by Tonikian et al. (27),
which is to date the largest contribution to the SH3 domain interactions
network in S. cerevisiae. The complete set of positives is available in
Dataset S1.

A key issue in this work was the choice of the negatives to be considered
with each SH3 domain. The challenge was to avoid negatives (nonbinding
proteins) that are actually positives (binding proteins) but had been mis-
identified in experimental studies, i.e., false negatives. This misidentification
risks distortingmotifs overrepresentation in positives relative to negatives. To
reduce this risk, we compiled for each SH3 domain all negatives obtained
from experimental studies we used to obtain the positives, and only in-
tersection of all these sources was retained in our benchmark. The complete
set of negatives is available in Dataset S2.

Combinatorial Space of Variations in Motifs. Our strategy involved searching
all possible variations of each motif by substitution of wildcards with all
possible combinations of amino acids, e.g., [IVL] or [DE]. The combinatorial
space of variations in motifs can be calculated using the binomial coefficient,
which allows computing the number of ways of picking k unordered out-
comes from n possibilities, as follows:

Ck
n =

k!
n!ðk−nÞ!.

Above, n represents the number of different amino acids (=20), whereas k
represents the number of different amino acids picked to substitute a
wildcard. By considering w as the total number of wildcards in a motif, the
combinatorial space of variations of the motif is calculated as follows:

Sw = ∏
w

X20
k=1

Ck
20 = ∏

w

X20
k=1

k!
20!ðk− 20Þ!.

As an example, we calculate below the combinatorial space of variations of
the motif PXXP:

S2 = ∏
2

X20
k=1

Ck
20 =

 X20
k=1

k!
20!ðk− 20Þ!

!2

≈ 1012.

Normalization of P-Values. For each motif, two P-values were calculated, PNEG
and PBAK, to score motif enrichment in the positives in comparison with the
negatives and the background. The distribution of PBAK was rescaled to have
the same min and max as the distribution of PNEG. Therefore, the same
cutoff could be used as threshold for both P-values. We describe below the
successive operations that were performed on the distribution of PBAK. Be-
low, the terms PBAK and PNEG are used as vector variables encompassing their
respective distributions.

1. Logarithmic transformation of P-values (i.e., order of magnitude scale):

PBAK =−log10PBAK ,

PNEG =−log10PNEG.

2. Shift minimum of PBAK to 0:

PBAK =PBAK −minðPBAKÞ.

3. Scale PBAK from 0 to 1:

PBAK =
PBAK

maxðPBAKÞ.

4. Scale PBAK from 0 to (max(PNEG) − min(PNEG)):

PBAK = PBAKðmaxðPNEGÞ−minðPNEGÞÞ.

5. Scale PBAK from min(PNEG) to max(PNEG):

PBAK = PBAK +minðPNEGÞ.

6. Exponential transformation of PBAK and PNEG (i.e., back to P-value
scale):

PBAK = 10−PBAK ,

PNEG = 10−PNEG .

Probability to Find the Overlap Between Predicted and Known SH3 Binding
Sites by Chance. The SH3 domain interactions we manually curated from
the literature involve 361 proteins with a total length of 272,979 aa, encoding
749 experimentally known SH3 binding sites with a total length of 8,003 aa.
The SH3 binding sites we predicted cover a length of 7,015 aa, among which
5,612 overlap with known SH3 binding sites. We calculate the probability to
obtain such overlap by chance using the cumulative hypergeometric distri-
bution, which scores the probability to see by chance at least k successes in a
sample of size n picked from a finite population of size N containing m
successes (Fig. 1D). Therefore, we consider the population as the total length
of the 361 proteins (N = 272,979), the successes in the population as the
amino acids within known SH3 binding sites (m = 8,003), the sample as the
amino acids in predicted SH3 binding sites (n = 7,015), and successes in
the sample as the amino acids overlapping between known and predicted
SH3 binding sites (k = 5,612). By applying the formula described in Fig. 1D,
i.e., using the high accuracy calculator located at keisan.casio.com, we
obtained a probability inferior to 10−100.

Binding Energy. Binding energy derived from physical energy terms, such as
van der Waals, electrostatic, and desolvation energies, were obtained using
the collection of high-confidence position-specific scoring matrices developed
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by Fernandez-Ballester et al. (57), and available in the ADAN database (58). For
each SH3 domain in yeast, the ADAN database includes a series of positional
matrices describing the contribution of each amino acid in terms of binding
and stability energy between an SH3 domain and a target binding peptide.

Solvent Accessibility. Protein solvent accessibility was obtained with SABLE,
version 2 (59) (using default input parameters), a program used for pre-
dicting real valued relative solvent accessibilities of amino acid residues in
proteins. In our experiments, only residues with highest confidence level of
solvent accessibility were considered in the analysis.

Sequence Conservation. For an input protein sequence, highly homologous
sequences were collected from a proteome reference (i.e., here fungi pro-
teome) using PSI-BLAST (60) (input: e value, 10−5; comp-based stats, 1; number
of iterations, 5) with 35% minimum homology. After that, highly similar se-
quences among collected homologues were filtered using CD-HIT with 95%
maximum homology. After filtering, remaining homologous sequences in-
cluding the input protein sequence were aligned using the MUSCLE algorithm
(61) (using default input parameters). Finally, the Rate4Site program (62) (us-
ing default input parameters) was applied to the multiple sequence alignment
to compute position-specific conservation scores of the input protein sequence
across diverse species.

Intrinsic Disorder. Protein disorder was determined using DISOPRED 2 (63)
with default input parameters. This software is designed to predict residues
in protein sequences that are likely to be natively disordered. In our ex-
perimentation, only residues with the highest confidence level of disorder
were considered as disordered.

Binding Affinity. The binding affinity was obtained from the work of Tonikian
et al. (27), in which SH3 binding peptides were identified by SPOT peptide
arrays, and then their binding specificity was scored based on signal in-
tensity. In total, 295 peptides showed positive signal with at least one
SH3 domain.

Functional Specificity. Given an SH3 binding site, we found its matching motif
(among those we discovered) with the best P-value, which reflects its binding
specificity. Then, we scanned the proteome to find proteins that matched
that motif. We then found enriched GO terms for these proteins. Only
manually curated GO terms were used. Specifically, among all of the evi-
dence codes available for GO terms, we did not consider those with the code
IEA (Inferred from Electronic Annotation) because they have not been
manually assigned by a curator (described in Guide to GO Evidence Codes
available at geneontology.org/page/guide-go-evidence-codes). The version
of the GO annotation used in this work was downloaded in April 2015.

The GO enrichment was performed using the hyperGTest function from
the GOstats R package (i.e., details in Table S1). The obtained P-values were
corrected for multiple hypothesis testing using the “Bonferroni” method,
after which we picked GO terms that corresponded to the corrected P-values
that were lower than 10−3. Selected GO terms were then used to calculate
the functional specificity of the motif. In GO hierarchy, we considered both
ancestors and offspring of each GO term, and then we calculated functional
specificity that incorporates this information, by measuring the proportion
of ancestors of each GO term over the total number of “reachable” terms,
i.e., ancestors plus offspring, as follows:

function  specificity=
number  of  ancestors

number  of  ancestors+number  of  offspring
.

When, for a given motif, multiple GO terms were found to be enriched, the
functional specificity was calculated separately for each GO term, and then
they were simply averaged to obtain the functional specificity for that motif.
During our experiments, we used each branch separately: MF, Molecular
Function, and BP, Biological Process. The correlations we obtained were
significant for both branches. However, we decided to present only the
correlation obtained for theMolecular Function branch, for the reason that it
is related to “functional diversity.”

Because linear motifs with high binding specificity are found in fewer
proteins than motifs with lower binding specificity, we wanted to be certain
that GO enrichment was not biased by the number of proteins that we had in
each set. To this end, we conducted a randomization-based analysis to de-
termine whether there is any relationship between the number of proteins in
a set and functional specificity. Thus, we randomly generated 1,000,000 sets
of proteins with different sizes (i.e., size 10, 20, 30, . . ., 100, 200, 300, . . .,
1,000, equally represented) from the Saccharomyces cerevisiae proteome.
Then we calculated the functional specificity for each set of proteins as
described above (Fig. S9). We found that functional specificity is not related
to the number of proteins in a set (correlation of −0.14); the average and SD
of the functional specificity obtained for the different sizes were similar.
Moreover, for all sizes, we observed a large variability of functional speci-
ficity, which suggests that, for a set of proteins of any number, we might
obtain either high or low functional specificity.
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